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Abstract: Cryptocurrencies have now become an emerging blockchain-based payment technology. Users’ identities

on such networks are pseudo-anonymous in that all transactions made from an address are transparent and

searchable by anyone; to preserve their privacy, users often use many different addresses. In recent years, some

studies have been conducted regarding analyzing clusters of Bitcoin addresses that, according to certain heuristics,

belong to the same entity. Such action allows law enforcement to have relevant information in cases where

cryptocurrencies are used for illegal trafficking. Clustering methods based on a single heuristic do not allow the

clustering of many addresses in a complete and accurate manner. This paper proposes Bitcoin Address Clustering

based on multiple Heuristics (BACH), a tool that uses three different clustering heuristics to identify clusters of

Bitcoin addresses, which are displayed through a three-dimensional graph. Based on the results, several analyses

were conducted, including a comparison with Wallet Explorer, an address clustering tool similar to BACH. BACH,

in addition to introducing the innovative feature of graphical visualization of the internal structure of clusters, is

shown to improve address aggregation through the joint use of three heuristics for clustering.

Keywords: Bitcoin; Address clustering; Blockchain; Anonymity; Heuristics

1. Introduction

Major electronic payment methods rely almost exclusively on financial institutions, which are
trusted third parties to process payments. Despite the effectiveness of these systems, they still suffer
from inherent weaknesses derived from a trust-based model. Moreover, due to mediation disputes,
totally irreversible transactions are not possible. The possibility of reversibility also comes the need
for trust, and a certain percentage of fraud is accepted as inevitable. On October 31, 2008, Satoshi
Nakamoto, whose identity is still unknown, sent an article entitled "Bitcoin: an Electronic Peer-to-Peer
Cash System" [1] to a mailing list of cryptography experts. Bitcoin began as an electronic payment
system based on cryptography rather than trust, allowing two counterparties to negotiate directly
without needing a trusted third party. Cryptography makes transactions computationally irreversible,
protecting sellers from fraud attempts. Bitcoin solves the double-spending problem through the use of
a peer-to-peer network. Transactions are grouped into blocks, which form a chain called a blockchain.
Thanks to the proof-of-work mechanism, Bitcoin guarantees the irreversibility of transactions: once
registered in the public blockchain, transactions cannot be changed unless the nodes collaborating
to attack the network control most of the computational power, as in the case of the 51% attack
[2]. Identities in the Bitcoin network are pseudo-anonymous: while they are not explicitly linked to
real-world individuals or organizations, all transactions are completely transparent. This leads to the
concern that the combination of scalable, irrevocable, and anonymous payments is very attractive to
criminals involved in fraudulent activities and money laundering. Over the years, several methods
have been developed to break the anonymity that Bitcoin is supposed to provide [3–9] by identifying
clusters of addresses. Such techniques, in any case, run up against the issue of the Bitcoin address
controller. The controller of an address may know the corresponding private key, but this does not
imply that it is the owner. For example, if a user buys bitcoins from an exchange such as Mt. Gox, his or
her funds will be contained in an address generated by the exchange, which knows the corresponding
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private key and can conduct transactions with it. In this case, Mt. Gox is the controller of the generated
address, even though the funds contained in it belong to the user. The study of clusters results in
potentially huge groups of addresses, as the number of addresses controlled by a service such as Mt.
Gox will be very large. Many studies have focused on a single analysis of clusters of major entities but
without studying the complete graph of the entire network divided into groups. Blockchain analysis
software based on these results has also been developed, such as BitConduite [10] and BitExtract [11].
This paper proposes a tool called Bitcoin Address Clustering based on multiple Heuristics (BACH)
that can partition the entire Bitcoin network into groups of addresses using variations of heuristics
already known in the literature. BACH allows the visualization of the various clusters found in a 3D
graph, thus allowing the overall structure of the clusters to be framed and any patterns within them to
be identified. The paper is organized as follows: the Section 2 details the heuristics that were used in
BACH, the Section 3 describes the operation of BACH and its components, the Section 4 describes the
experiments performed to evaluate the operation of BACH, and finally the conclusions are given in
Section 5.

2. Heuristics employed

Bitcoin address clustering is useful for analyzing transactions occurring in the network. Once a
cluster of addresses is found, off-chain information can be combined to trace the identity of the entity
related to the cluster. These heuristics were chosen because they are recent and since they have been
shown to be particularly effective. Multiple heuristics can be used simultaneously to improve the level
of aggregation of the entities found. The three heuristics presented below were used in the present
study. Finally, the reliability of the heuristics will be analyzed.

2.1. Multi-Input Address Clustering

The first heuristic presented, which deals with clustering all input addresses to a transaction, is
one of the most widely used heuristics for clustering. Androulaki et al. [12] studied transaction input
addresses and developed this heuristic.

Definition 2.1. If two (or more) addresses are inputs to the same transaction, they are controlled by the same
user; that is, for each transaction t, each pk ∈ input(t) is controlled by the same entity.

The effects of this heuristic are transitive, i.e., if a transaction with addresses A and B as input
is observed, and then another with addresses B and C as input, it can be inferred that addresses A,
B and C all belong to the same user. As introduced earlier, it is possible that there are potentially
huge clusters due to services such as Mt. Gox that control a large number of addresses belonging to
different users; despite this, they will still be clustered into one large cluster. In this case, these are
not false positives since these services have access to users’ private keys and control addresses. The
heuristic of multi-input clustering is widely used because it is highly accurate: the sender must know
all the private keys of the corresponding public keys used in the various inputs to sign a transaction.
According to Bitcoin’s protocol, in order to transfer bitcoins from an address, the respective private key
must be provided; that is, the transaction must be signed. For this reason, the public keys used as input
are unlikely to be controlled by different users since they should know everyone else’s private keys.
Furthermore, the transaction is initialized by only one Bitcoin client; therefore, all input addresses
can be considered to belong to the same entity. The accuracy of this heuristic can reach 100% if the
cases where users use mixing services or CoinJoin transactions [13] are not considered to intentionally
avoid being tracked through clustering. In these situations, the heuristic generates false positives, i.e.,
addresses not belonging to the same user are clustered together.

2.2. Change Address Clustering

The change address is used in a transaction to return any change to the sender. It is usually a new
address generated by the client itself, i.e., the Bitcoin wallet, during the creation of the transaction. In
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fact, to construct a transaction, the Bitcoin wallet must refer to the currently available set of UTXOs
(Unspent Transaction Outputs), that is, the set of outputs that can be spent. In the Bitcoin protocol, a
UTXO is indivisible, so it must be used in its entirety. If the UTXO is greater than what the transaction’s
sender wants to spend, a new address will be created to receive the change (change address), to which
the new UTXO will be sent. In the past, Bitcoin wallets did not generate a new address to receive a
change but used the same input address as the sender. To improve anonymity on the network, now
the new wallets automatically generate a new address for each transaction to be used as the change
address. In the work by Androulaki et al. [12], in addition to introducing heuristics on multi-input
clustering, a heuristic is also presented for identifying the change address of a transaction so that it can
be added to the cluster of input addresses and improve the aggregation level. In the article, addresses
automatically generated by Bitcoin clients to receive change are called "shadow addresses." Over the
years, many researchers have tried to improve this heuristic to minimize false positives and avoid
constructing unreliable clusters. The proposed work uses a variation of this heuristic, proposed by
Zhao et al. [14], in which a method is presented that considers whether the output address is new or
already in the blockchain and evaluates the amounts transferred in the transaction. This variant of
change address clustering was chosen to be implemented because the heuristic is recent and has a high
level of reliability.

Definition 2.2. Let t be a Bitcoin transaction, A the set of Bitcoin addresses currently in the blockchain:

1. Coinbase /∈ Input(t)
2. a ∈ Output(t), ∃ai ∈ Output(t), ai ̸= a
3. ∀an ∈ {am|am ∈ Output(t), am ̸= a}, an ∈ A
4. ∃an ∈ {am|am ∈ Output(t), am ̸= a}, an /∈ A
5. ∀an ∈ {am|am ∈ Output(t), am ̸= a}, a.value < an.value
6. ∃!a ∈ Output(t), ∀an ∈ Input(t), a.value < an.value

If address a satisfies conditions 1., 2. and 3. or 1., 2., 4., 5. and 6., then this is the change address of
transaction t.

If address a satisfies conditions 1., 2. and 3., then it is the only new address among all the outputs
of t. In this case, address a is labeled as the change address and added to the transaction input address
cluster, as shown in Figure 1.

Figure 1. Change Address example: output address D is the change address

On the other hand, if address a satisfies conditions 1., 2., 4., 5. and 6., then it means that there is
not a single new address in the output of t, and address a is the only one among them whose amount
is less than all the amounts of the inputs of t. In this case, address a is the change address, as shown in
Figure 2.
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Figure 2. Change Address example: output address E is the change address

If no output address in a transaction verifies these conditions, no address will be marked as a
change address. In addition, transactions in which an address in the outputs belongs to the transaction’s
inputs are not considered since this address is usually just the change address and is already part of
the input cluster.

2.3. Coinbase Address Clustering

A coinbase transaction is the first transaction in a block. It is constructed by the miners to receive
the mining reward along with the transaction fees in the block. A coinbase transaction is similar to a
regular Bitcoin transaction, the only difference being that the coinbase transaction contains a single
empty input, called coinbase, and a set of output addresses specified by the miner to receive the reward.
Miners often use the scriptSig field of the coinbase transaction to include a text string. This field
unlocks input-related funds within a normal Bitcoin transaction, typically by providing one’s private
key. However, for coinbase transactions, there is no need to provide a script to unlock funds, as these
are generated by the blockchain and transferred to the miner. Miners typically use this field to include
the name of their mining pool, but it can be used to enter any text string. In the early days, when the
Bitcoin protocol was launched, individual miners mined blocks. As the technology developed, this
phenomenon gradually disappeared, replaced by mining pools. In mining pools, miners collaborate to
solve the proof-of-work problem. Once a viable solution is found, the mining pool is responsible for
distributing the rewards of the mined block to all the miners who participated in the mining process in
proportion to the computational power made available by each of them. As a result, more and more
miners are opting for mining pools to reduce energy costs and obtain more stable revenue. Lewenberg
et al. [15] analyzed the operational structure of Bitcoin mining pools. Thus, the last heuristic used in
the tool implementation concerns clustering all output addresses in a coinbase transaction.

Definition 2.3. If a coinbase transaction contains two (or more) output addresses, they are all controlled by the
same entity.

Ordinarily, the output addresses a coinbase transaction unless it is a single miner belonging to a
mining pool, as shown in Figure 3. These addresses will then be tasked with distributing the block
rewards to the miners who participated in the pool
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Figure 3. Coinbase Address example: addresses A, B, and C belong to a mining pool

The heuristic used in the proposed work adds an additional condition: if the number of output
addresses in the coinbase transaction is greater than a certain threshold γ, then the heuristic is not
applied to the transaction. This check is made because some mining pools, such as P2Pool and Eligius,
distribute shares to miners directly in the coinbase transaction. It may occur, therefore, that the output
addresses of a coinbase transaction refer to different users, and building a cluster with these elements
would be incorrect. In the BACH tool, γ was assigned the value 10, as it was considered a valid
compromise based on experimental evidence.

Definition 2.4. If the number of output addresses in a coinbase transaction is less than the γ threshold, then
they are all controlled by the same entity.

In this way, many addresses that actually belong to the mining pool are not added to the relevant
cluster. It also avoids clustering false positives together, which would contribute to the construction of
untrue clusters.

2.4. Accuracy and limitations

Each mining pool has its own internal distribution pattern, which changes frequently. The same
considerations can be made for mixing services. For this reason, trying to identify a unique pattern for
these services would be meaningless. Rather, heuristics with a certain degree of reliability are used,
which can be applied to all Bitcoin services indiscriminately. Several studies have been conducted
regarding the accuracy of heuristics used in clustering Bitcoin addresses. Gong Yanan and Chow [16]
analyzed the error rates of some clustering heuristics. Clearly, the accuracy of heuristics does not
depend solely on the heuristic itself, but other factors also contribute to determining it, such as the
case of CoinJoins for multi-input clustering and the distribution patterns of some mining pools for
coinbase clustering. Chang et al. [17] used the Gini impurity index to measure the homogeneity of
the clusters found. To calculate it, information regarding the identity of each cluster must be added,
which is not currently present in the BACH tool. Each cluster ideally should contain only addresses
belonging to the same entity, but in reality, this is not always the case, and it may happen to have
addresses belonging to different entities within the same cluster. Therefore, the following formula is
used to calculate cluster homogeneity:

Gini( f ) = 1 −
m

∑
i=1

f (i)2 (1)

where m is the number of different tags found within a given cluster, i is the index of each tag, and
f (i) is the fraction of Bitcoin addresses in the cluster belonging to tag i. A tag corresponds to an entity
previously found by off-chain information analysis. A pure cluster should contain only addresses
belonging to a single entity, and its Gini index would equal 0. But when false positives are included in
the cluster, the Gini index can increase to a maximum 1.
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3. BACH

BACH is logically composed of three different components:

• The database containing the blockchain data;
• The server that provides this data through the database;
• The client that displays the results.

The network architecture follows a client-server model with a database, whose communication
flow between the various nodes is as follows:

• The client application accepts an input from the user and sends an HTTP request to the server;
• The server opens a connection with the database, performs the query and receives the result;
• The server sends the result obtained to the client application that made the request;
• The client application displays the cluster data received from the server in a 3D graph.

3.1. Database construction

A script has been developed to retrieve transaction data from the public blockchain and build a
database with all addresses divided into clusters using the three heuristics described in the previous
section. In addition, all the relationships between addresses created by individual transactions were
stored, which will then be used to visualize the cluster within a 3D graph. All addresses found during
the scan are stored within the database. In addition, information about the internal structure of the
clusters is stored, i.e., the relationships that bind the various addresses within the cluster, which
depend on the heuristics used.

The database schema is shown in Figure 4.

Figure 4. Schema of the Database used by BACH

The address table contains information regarding the addresses found and the clusters to which
they belong; there is also a field to specify the type of address (Legacy, Pay To Script Hash, Native
SegWit, Taproot), and a field to indicate whether the address is a miner, i.e., appears in output to at
least one coinbase transaction. The sub_cluster table, on the other hand, contains information on the
relationships between different pairs of addresses within the same cluster; in addition, for each pair,
the type of relationship is indicated, i.e., the heuristics used to construct it: this information will be
used in the 3D graph to highlight the different relationships with different colors.

After the database construction, to speed up the reading operations in the API, the following
indexes were defined:

• create index hash_index on address(address_hash);
• create index subcluster_index on sub_cluster(address_id_1, address_id_2).

Some additional solutions were adopted to improve the script execution performance and the
speed of 3D graph rendering: - All the hashes of the blocks to be parsed are inside a file in the project
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directory and loaded into memory at the beginning of the script execution to optimize the speed of
reading this data. The database connection is left open during the script’s execution, so the queries are
executed much faster. In addition, the connection is closed and reopened every 100 blocks to avoid
losing data and make a backup. - Replacing the Scanner object with the BufferedReader speeded up
the download operation and mapping blocks within objects, greatly improving the overall execution
time.

The repository containing the complete code is available on GitHub1.

3.2. Server architecture

After building the database, REST APIs were implemented to allow external applications to
access the data. The technology used is ExpressJS, a NodeJS library for API development. Specifically,
endpoints were defined as those that receive GET-type requests via HTTP protocol, query the database,
and return data in JSON format, depending on the parameters passed to the request. The endpoints
defined are as follows:

• GET /{address}: Returns all addresses belonging to the address cluster passed as parameter.
• GET /sub/{address}: Returns all links between addresses belonging to the cluster of the address

passed as a parameter.
• GET /info/{address}: Returns all the links of the address passed as a parameter.

These can then be used by the client application, i.e., the BACH tool, to access the data stored in
the database. The repository containing the complete code is available on GitHub2.

3.3. BACH Webapp

Finally, the web application was implemented, allowing the data on the clusters to be visualized
through a 3D graph and tabular structures. The technology used to implement the application is React,
a front-end JavaScript library for creating user interfaces. The tool allows the user to set a Bitcoin
address in the search bar and display some information about the address cluster. In particular, the tool
allows the display of a table of all addresses belonging to the same cluster as the found address and
a 3D graph of the cluster, constructed using the heuristics presented above. In addition, by clicking
on one of the nodes in the graph, it is possible to visualize in detail all the links of the latter to the
other addresses in the cluster. The 3D Force-Directed Graph component has been used to construct
the 3D graph. It allows the data structure of a graph to be represented in a three-dimensional space,
using ThreeJS/WebGL for 3D rendering. The tool’s homepage provides more information regarding
the cluster graph, such as the colors used for the nodes and arcs. The tool allows moving within the
3D graph, zooming in and changing angles, to better visualize certain nodes and links present in the
cluster. In addition, clicking on a node within the graph will show all its links to other nodes, with the
type of heuristics used for linking. A negative element is the rendering speed of the graph, which on
devices with small capacities could take several tens of seconds, especially if the cluster to be displayed
is very large. To remedy this problem, the link_visible_size field in the sub_cluster table has been
introduced in the database, which avoids rendering all the links within a cluster. This allows even less
powerful devices to view the entire cluster graph without experiencing major slowdowns. In the client
code, it is possible to modify this field so that if a node contains more links than the set limit, they are
not rendered within the graph. This aspect is useful in cases where there are fairly large groups of
addresses in which each has a link to every other address in the group: this is the case with groups that
are formed using multi-input clustering heuristics; indeed, all input addresses to the same transaction
have a link to all others. If the number of input addresses is N, then the relationships between them
will be N!, i.e., a significantly larger number and growing factorially with N. It is important to note

1 https://github.com/semifredd0/BACH-tool-database
2 https://github.com/semifredd0/BACH-tool-server
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that although these links are not shown in the graph, the nodes are still displayed correctly, as shown
in Figures 5 and 6.

Figure 5. Viewing with no limitation in the display of links

Figure 6. Viewing with active link display limit

The repository containing the complete code is available on GitHub3.

3 https://github.com/semifredd0/BACH-tool

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2024                   doi:10.20944/preprints202406.1956.v2

https://github.com/semifredd0/BACH-tool
https://doi.org/10.20944/preprints202406.1956.v2


9 of 19

4. Experimentation

This section reports the experiments carried out to validate the functionality of BACH. The
experiments were performed considering the first 130,000 blocks of the Bitcoin blockchain. The script
for building the database ran on a Windows 10 machine with 16 GB RAM and AMD Ryzen 7 4700U
processor. The first 130,000 blockchain blocks were parsed over a runtime of about a week. The final
size of the database is 6454 MB. After the first 100,000 blocks, the execution slowed down considerably.
This was due to the increasing number of transactions within the blocks and, more importantly, to the
increasing database size. In addition to reading and inserting operations, editing operations are also
required on existing records, such as updating the ClusterID of an address group. Since some fields
are changed frequently, it is impossible to define indexes on them to speed up reading.

4.1. Detection of peeling chains

The peeling chain is a transactional pattern, used mainly by mixing services, that allows large
sums of money to be laundered through a long series of small transactions. This process is illustrated
in Figure 7. Basically, the peeling chain starts with one address receiving a certain amount of money.
This address then sends the money to two (or more) addresses: one still belongs to the transaction’s
sender, representing the changed address. The change address repeats the peeling process until all the
money runs out.

Figure 7. Peeling chain process. Each node in the peeling chain uses only two addresses for each
transaction: one is the address where the peel is sent (in grey), and the other is the change address,
where the remaining amount of money is sent (in blue). The address chain in blue represents the peel
chain.

Typically, the address to which peels are sent belongs to an exchange, where they are usually
converted into fiat currency or other types of assets. Criminals typically use very long and complex
peeling chains to lose track of their funds. Note that this pattern does not have to be attributed to
money laundering activities but can also be used by ordinary users who wish to maintain privacy and
avoid being tracked by clustering tools. Through the BACH tool, some clusters were identified that
could be the result of a peeling chain. In fact, as can be seen in Figures 8 and 9, they exhibit a spiral
shape in which each cluster address represents the change address of another. The tool, in fact, thanks
to the 3D visualization of the cluster graph, makes it easy to identify any patterns present within it.
They are very similar and are shown in the figure from the same angle. Each address is linked to
another through change address heuristics, as seen by the light blue colored links between the various
nodes. This type of structure often indicates the presence of a peeling chain.
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Figure 8. Cluster A graph

Figure 9. Cluster B graph

Cluster A contains 3659 addresses, while Cluster B contains 2781 addresses. You can analyze
them in detail with the BACH tool by entering the following Bitcoin addresses:

• Cluster A: 162G6uzHJpmxsM3EQFDLzEYCmx1hxnJtRR
• Cluster B: 1Lgne9nu4ZzVyfqarr2Mdp8JmhsB3amvA8

The patterns were represented by a Sankey diagram, a special flow chart in which the width of the
arrows is drawn proportionally to the amount of flow. Sankey diagrams, drawn using the online tool
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SankeyMatic, are very useful for visualizing the money flow between addresses. The spiral-shaped
clusters identified by the BACH tool represent peeling chains. Each address in the chain, as it first
appears in the blockchain, is identified as the change address of the transaction. This way, all addresses
in the peeling chain are correctly placed in the same cluster. On the other hand, a limitation of the tool
is that the addresses where peels are sent are not included in the cluster. The first pattern identified
uses only one address to which the peel is sent and can be schematized as in Figure 10. Each node in
the peeling chain always sends the peel to the same address, eventually containing the same amount
of money as the address that starts the chain. This is the simplest configuration of a peeling chain.
The other two patterns identified instead use multiple peeling addresses in a way that increases their
complexity. Specifically, the second uses about ten peeling addresses, while the third uses hundreds.
Figure 11 summarizes the process used by these patterns: in the example, only six peeling addresses
were included, which will eventually contain the amount of money from the address that started the
chain, but the process used by the patterns described is identical.

Figure 10. Peeling chain with single peeling address

Figure 11. Peeling chain with multiple peeling addresses
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Analyzing the spiral clusters identified by the BACH tool, it was found that cluster B, shown
in Figure 9, uses a peeling chain with multiple peeling addresses, similar to the pattern shown in
Figure 11. The same cluster has been investigated by Zhao et al. [14], in which a peeling chain pattern
was identified by studying 166 mixing transactions. Specifically, 125 BTC were transferred from an
address to eight peeling addresses. At the end of the process, the amount of money in the eight
destination addresses matched the amount contained in the source address. BACH provides several
useful information regarding the cluster, but a limitation of the tool is that the peeling addresses are
not placed in the same cluster as the peeling chain addresses.

4.2. Comparison to Wallet Explorer

This section highlights the differences between the clusters found by BACH and those found
instead by Wallet Explorer. To perform this type of analysis, the database was reconstructed using only
the heuristic on multi-input clustering, i.e., the only heuristic used by Wallet Explorer for constructing
clusters. In this way, the results obtained by the two tools after analyzing the same dataset will be
compared since Wallet Explorer also analyzes transactions after the block at a height of 130,000. Next,
some of the limitations of Wallet Explorer are listed:

• Uses only multi-input clustering heuristic, thus not allowing aggregate clusters with a good
probability to belong to the same entity.

• Does not allow visualization of relationships between addresses in the same cluster but merely
displays them all in the same table.

• Because of the previous point, it is impossible to visualize the cluster’s internal structure graphi-
cally since the relationships have not been stored.

BACH aims to solve these problems by using three clustering heuristics and storing all the
relationships between addresses for each analyzed transaction, indicating the heuristics used to find
them. This information allows one to trace the internal structure of the cluster, which is illustrated
in a 3-D graph. The clusters were analyzed by reconstructing the Wallet Explorer database with the
same scheme used by BACH but exclusively implementing heuristics on multi-input clustering. This
method also allows comparison of the internal structure of the clusters obtained by the two tools. The
following images show a comparison of the identified clusters.

Figure 12 displays a cluster obtained exclusively using the multi-input clustering heuristic; in fact,
all its links are orange, i.e., the various nodes are related to each other with the only relationship of
multi-input. Figure 13, on the other hand, shows the same cluster but constructed using the BACH
tool: in fact, it is possible to visually notice the difference in the number of nodes and relationships
between the two clusters. In addition, other types of links are also present, which indicate the
use of the new clustering heuristics introduced in the tool. It is important to note that some small
clusters obtained with the heuristics on multi-input are not clustered together in Wallet Explorer,
while the BACH tool aggregates some of them to the main cluster using the other two heuristics.
The following address can be searched in the BACH tool to analyze the cluster shown in the figure:
1wEmdvd75rGsTiR8myP1F9os8yPUySUKJ. Di seguito viene mostrato un ulteriore esempio, questa volta
utilizzando il cluster di Slush Pool [18]. Anche in quest caso possono essere effettuate le medesime
considerazioni.
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Figure 12. Cluster obtained using Wallet Explorer

Figure 13. Cluster obtained using BACH

In Figure 14, the cluster contains only the nodes linked to the central address, while in Figure 15,
it is possible to see how these addresses are also linked to others through new relationships, which
in most cases are identified by heuristics on change address clustering. Ultimately, this analysis has
shown how BACH favors an increase in address aggregation within clusters compared to Wallet
Explorer and introduced a novel feature to observe the cluster from a new point of view.
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Figure 14. Cluster obtained using Wallet Explorer

Figure 15. Cluster obtained using BACH

Table 1 shows some information about the results obtained by the two tools.
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Table 1. Comparison of the results obtained by the two tools

Indicators Wallet Explorer BACH

Number of total clusters 54441 62865
Number of total relations 3597427 4315813
Size of the largest cluster 10084 25377
Database size 4074 MB 6454 MB

In contrast to expectations, the number of total clusters turns out to be higher in the case of BACH,
which is expected to contain a smaller number of clusters as it aims to aggregate smaller clusters into
larger ones. This goal was indeed achieved by BACH, but the larger number of clusters identified can
be attributed to the use of the new heuristic on coinbase clustering, which identifies a large number
of clusters by analyzing coinbase transactions. In fact, there are a total of 11,006 clusters consisting
solely of miners, as many of the initial blocks of the blockchain contain multiple output addresses in
coinbase transactions; as a result, many clusters are formed due to the heuristic on coinbase clustering.
By removing these clusters from the figure shown in the table, a total of 51,859 clusters are obtained.
This is a lower number than that of Wallet Explorer, which shows how the introduction of the two new
heuristics improved the degree of address aggregation in the network. In addition, the table shows
data on the number of total relationships, which is obviously higher in BACH’s case, and the number of
addresses from which the largest cluster is composed. Finally, the size of the databases containing the
data used by the two tools is shown: in this case, most of the space is clearly occupied by information
about the relationships within the various clusters. Thus, the database will be significantly larger in
the case of BACH, which contains many more relationships than Wallet Explorer. It is important to
emphasize that the size given for the Wallet Explorer database does not correspond to the actual size of
the database used by the service since the database has been reconstructed to carry out these analyses:
in fact, Wallet Explorer does not store the internal relationships for each cluster, greatly reducing its
size.

Some interesting data regarding the size of the clusters found and the distribution of addresses in
the various clusters are now shown. The two graphs in Figure 16 and Figure 17 show the sizes of the
100 largest clusters obtained from BACH and Wallet Explorer analysis, respectively.

Figure 16. Size of the 100 largest clusters obtained with BACH
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Figure 17. Size of the 100 largest clusters obtained with Wallet Explorer

These graphs show that the number of addresses per cluster has increased evenly, improving the
level of address aggregation. The average number of addresses per cluster in BACH has also grown
compared to Wallet Explorer. This aspect can be seen even more clearly in the two graphs in Figure 18
and Figure 19, in which the values on the y-axis indicate the size of the clusters, while those on the
x-axis indicate the number of clusters with a given size.

Figure 18. Distribution of addresses in clusters obtained with BACH
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Figure 19. Distribution of addresses in clusters obtained with Wallet Explorer

In Figure 18, it is possible to observe how the curve settles around the value 100, while in Figure
19, this happens around the value 50. This finding indicates that BACH can detect many more clusters
larger than Wallet Explorer, where most of the clusters found contain a maximum of about 50 addresses.
The number of addresses analyzed is the same for both tools, but the distribution of these within the
various clusters has changed dramatically. In fact, in the case of BACH, the number of addresses not
belonging to any cluster decreased by about 60% compared to the Wallet Explorer analysis.

5. Conclusions

This work proposed BACH, a tool that can analyze Bitcoin transactions and identify clusters of
addresses that can potentially belong to a single entity. Such a tool is more effective than those already
known, using multiple combined heuristics to identify the address cluster. BACH works on Bitcoin
but is still extendable to other cryptocurrencies operating via blockchain. The operation of BACH is
superior to other already known tools because it uses multiple heuristics simultaneously. Experiments
have shown that BACH is particularly effective in detecting transactional patterns and that the clusters
detected are more complete and substantial. Such a tool thus proves useful when deanonymizing
transactions on the blockchain, particularly where illicit activity or money laundering is suspected.
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